

2023年秋季

HW02 第02章 平面连杆机构 作业

南方科技大学

- (1) 平面连杆机构中, 曲柄的定义是什么? 摇杆的定义是什么?
- (2) 按照曲柄、摇杆的数量分类,铰链四杆机构有几种类型?他们各自的判断条件是什么?
 - (3) 请在下图中标注出机构的压力角和传动角。
 - (1) What is the definition of crank? What is the definition of rocker?
- (2) According to the number of crank and rocker, please list all variations of planar 4R linkage (linkage with 4 revolute joints), and describe the geometric conditions to form each type of them.
- (3) Please point out the pressure angle and the transmission angle in the figure.

B. 高副

C. 低副

A. 转动副

HW02.2

1、	平面四杆机材	勾中,是	否存在死	点,取决于	于	_是否与	连杆共线。		
	主动件								
2、	一个K大于1	的铰链四	7杆机构与	K=1的对。	ご曲柄清	予块机构	串联组合,	该串联组合	
而成的机构的行程变化系数K。									
A.	大于1	B. 小寸	F1 (C. 等于1	D). 等于	2		
3、在设计铰链四杆机构时,应使最小传动角γ _{min} 。									
Α.	尽可能小一	些 B	. 尽可能	大一些	C. 为0	\mathbf{p}° D	. 45°		
4、	平面连杆机材	勾是由许	多刚性体	由	联结而原	成的机构	J		
	•	•	•						

B. higher pairs

A. Revolute joints

HW02.2

1. For a planar four bar linkage, the existence of a dead center is depends on whether the										
is collinear with the coupler.										
A. Input link B.	Output link	C. Ground	D. Rocker							
2. A planar 4R linkage (K>1) is combined in series with a centric slider-crank mechanism										
(K=1), then the coefficient of travel speed variation (K) of the new mechanism is										
A. Bigger than 1	B. Smaller than	1 C. 1	D. 2							
3. When designing a 4R linkage, the minimum transmission angle, γ_{min} , should be										
A. As small as possible	B. As big as po	ssible $C. 0^{\circ}$	D. 45°							
4. A planar 4R linkage connects the rigid links by .										

C. lower pairs

如图所示的四杆机构,已知杆CD为最短杆。若要构成曲柄摇杆机构

- (1) 若AD为最长杆, 机架AD的长度范围是多少?
- (2) 若BC为最长杆, 机架AD的长度范围是多少?

A four-bar mechanism is shown in the figure, and the bar CD is known to be the shortest bar. If you want to form a crank-rocker mechanism.

- (1) If AD is the longest rod, what is the range of lengths of rack AD
- (2) If BC is the longest rod, what is the range of lengths of rack AD

图2-1: 四杆机构 (长度单位为mm)

Fig. 2-1: Four-bar mechanism (length in mm)

在图示机构中

- (1) 以构件1为主动件, 机构是否会出现死点位置? 如果有, 请画出机构的死点位置并表明机构的主动是为哪一个构件
- (2) 以构件3位主动件, 机构是否会出现死点位置? 如果有, 请画出机构的死点位置并表明机构的主动件是哪一个构件

In the illustrated mechanism

- (1) With member 1 as the active member, does the mechanism have a dead center position? If so, draw the dead center position of the mechanism and indicate which member is the active member of the mechanism.
- (2) With member 3 as the active member, does the mechanism experience a dead center position? If so, draw the dead center position of the mechanism and indicate which member is the active member of the mechanism.

设计一个铰链四杆机构,如图所示,已知摇杆CD的长度为75mm,机架AD的长度为100mm,摇杆的一个极限位置与机架之间的夹角 $\varphi=45^{\circ}$,构件AB单向匀速转动。当行程速比系数K=1时,求

- (1) 构件AB的杆长;
- (2) 构件BC的杆长;
- (3) 摇杆的摆角 ψ 。

Design a hinged four-bar mechanism as shown in Fig. It is known that the length of the rocker CD is 75 mm, the length of the frame AD is 100 mm, the angle $\varphi = 45^{\circ}$ between one of the limit positions of the rocker and the frame, and that the member AB rotates unidirectionally at a constant speed. When the coefficient of travel-velocity ratio K = 1, find

- (1) The rod length of member AB;
- (2) The rod length of member BC;
- (3) The angle of swing of the rocker ψ .

2023年秋季

Deadline of this homework: Oct 10 @ 23:30

Link to submission:

https://ancorasir.com/?page_id=3987

All homework MUST be hand-written.
No late submission is allowed!

Please refer to the above link for further details on how to make the submission and the detailed deadline for submission.

谢谢~

南方科技大学